
Lecture 10

Last time

We defined the fundamental solution

E(x) =
Cn
|x|n−2

n ≥ 3 (1)

where we chose Cn = −1/(n− 2)|Sn−1| and Sn−1 represents the area of the unit sphere in Rn.
Let u, φ ∈ C2(Ω) ∩ C0(Ω), Ω ∈ C1, open. Recall our Green identities∫

Ω

~5u~5φ+ u∆φ =
∫
∂Ω

u∂νφ GØ

∫
Ω

u∆φ− φ∆u =
∫
∂Ω

(u∂νφ− φ∂νu) GII

(2)

Choose y ∈ Ω and let u ∈ C2
o (Ω). Set φ to be our fundamental solution φ(x) = E(x−y) =: Ey(x). We

see that φ has a simple pole at y, hence we excises it from our domain Ω by defining Ωε = Ω\Bε(y)
for some ε > 0. We define ν as a unit outward normal vector to ∂Ω; in precise, ν ∈ T⊥x ∂Ω for x ∈ ∂Ω
s.t for any positive time trajectory nearby, x+ tν /∈ Ω. Define ~r = ε

‖ε‖ ∈ T
⊥
x ∂Bε(y) in a similar sense

as ν, pointing away from Bε(y). By Green identity II∫
Ωε

u∆Ey︸︷︷︸
=0

−Ey∆u =

∫
∂Ω

( u︸︷︷︸
=0

u∈Co(Ω)

∂νEy − Ey ∂νu︸︷︷︸
=0

u∈Co(Ω)

)−
∫
∂Bε(y)

(u∂rEy − Ey∂ru) (3)

=⇒
∫

Ωε

Ey∆u =

∫
∂Bε(y)

(u∂rEy − Ey∂ru) (4)

We wish to create a bound on the LHS,

∫
∂Bε(y)

|Ey∂ru| ≤
Cn
εn−2

·

∂ru=
∑
ri∂iu

‖r‖=1︷ ︸︸ ︷
|~5u(y)| · |Sn−1|εn−1︸ ︷︷ ︸

m(Bε(y))

+ Cε · o(1)︸ ︷︷ ︸
Error due y

= O(ε)

by our choice of Cn above. Note that the o(1) stems from the definition of continuity for which we

have |x− y| ≤ ε resulting in |~5u(x)− ~5u(y)| = o(1), by the continuity of ~5u here. Now,∫
u∂rEy = u(y)

(2− n)Cn
εn−1

· |Sn−1|εn−1 + o(1) = u(y) + o(1) by the choice of Cn.∫
Bε(y)

|Ey∆u| = O(ε2) (5)

Hence
LHS ≤ u(y) + o(1) +O(ε).
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Note that by the definition of Ωε ∫
Ω

=

∫
Ωε

+

∫
Bε(y)

so given our result in (5) that if ε → 0, our integral
∫
Ey∂ru → 0 over ∂Bε(y), impling that the

integral over Ωε converges to the integral over Ω and hence we have

∫
Ωε

Ey∆u︸ ︷︷ ︸
−→

∫
Ω

=

−→u(y)︷ ︸︸ ︷∫
∂Bε(y)

u∂rEy −
∫
∂Bε(y)

Ey∂ru︸ ︷︷ ︸
−→0

as ε→ 0.

The domain Ω may now be generalized to Rn and we have for any u ∈ C2
o (Ω) :

u(y) =

∫
Ω

E(x− y)∆u(x) dx, u = E ∗∆u. (6)

Poisson : ∆(E ∗ f) = f (f ∈ C0,α)

Kind of an inverse.

Greens Formula — Integral Solution for ∆u = 0 Cauchy problem

Let φ = Ey in Green identity II. For any u ∈ C2(Ω) we have the general Green’s formula

u(y) =

∫
Ω

Ey∆u dx+

∫
∂Ω

(u∂νEy − Ey∂νu)︸ ︷︷ ︸
note: 6=0; u/∈C2

0 (Ω)

dSx (G III)

therefore supposing u is harmonic in Ω i.e satisfies ∆u = 0 in Ω then for any y ∈ Ω:

u(y) =

∫
∂Ω

(u∂νEy − Ey∂νu) dSx (7)

represents the solution for the Cauchy problem on Ω, interms of of its Cauchy data u and ∂νu on ∂Ω
provided it exists. Due to Dirichlet’s uniqueness theorem (one presented in Lecture 9), proved that
the solution for ∆u = 0 is determined by values of u on ∂Ω alone - in other words; one cannot prescribe
both values of u and ∂νu on ∂Ω. the Cauchy problem for the Laplace equation generally has no solution.
However, this integral solution can be used to show other important properties of harmonic functions
with its domain of definition.

Suppose that φ(x) ∈ C2(Ω) satisfies ∆φ = 0 on Ω. Then

Φy(x) = E(x− y) + φ(x)

defines another fundamental solution for the Laplacian with pole at y ∈ Ω. We have

u(y) =

∫
Ω

Φy∆u+

∫
∂Ω

u∂νΦy − Φy∂νu, (G IV )
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From GIII: Leibniz rule :a(x) =
∫
b(x, y)dy. b ∈ C, ∂xb ∈ C.

=⇒ ∂xa(x) =

∫
∂xb(x, y)dy

K ⊂ Ω compact boundary well separated :

sup
K
|∂αu| ≤ C(K,α)

(
sup

Ω
|u|+ sup

Ω
|~5u|

)
=⇒ u ∈ C∞(Ω)

Mean Value Property

Another application of Green’s formula is the Mean Value Property (MVP). Suppose u is harmonic on
Ω, and consider a ball centered around the pole y of our fundamental solution, in precise Br(y) ⊂ Ω.
Setting φ = 1 in Greens identity I (GI) we have∫

Ω′
∆u =

∫
∂Ω′

∂νu =⇒
∫

∂Br(y)

∂ru = 0

(noting that the ~5u · ~5φ factor vanished due to our choice of φ).
We use Greens formula,

=⇒ u(y) =

∫
∂Br(y)

(u∂rEy −

Ey on
∂Br=0
=⇒

∫
=0︷ ︸︸ ︷

Ey∂ru ) dSx =

invar
∈∂Br(y)

∂rEy︸ ︷︷ ︸
∫

∂Br(y)

u dSx,

noting that for E(x− y)|∂Br(y) vanishes. Now,

∂rEy =
d

dr

r2−n

(2− n)|Sn−1|
=

1

|Sn−1|rn−1

=⇒ 1

|Sn−1|rn−1

∫
∂Br(y)

u dSx =
1

|∂Br|

∫
∂Br(y)

u dSx (8)

(9)

therefore we have,

u(y) =
1

|∂Br|

∫
∂Br(y)

u dSx

=
1

|Br|

∫
Br(y)

u dx.


where the enclosed integral simply evaluates the average of u over its domain. This essentially means
the value of a harmonic u in a closed ball at the centre equals the average of the values of u on the surface.
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Now suppose u is subharmonic i.e ∆u ≥ 0 :∫
Br(y)

Ey∆u dx ≤
∫

∂Br(y)

Ey∂ru dSx

=⇒ u(y) ≤
∫

∂Br(y)

u dSx =

∫
Br(y)

u dx.

The Maximum Principles

Suppose that Ω ⊂ Rn is an open, bounded and connected. We will first assert a weaker form of the
maximum principal.

Theorem 1 (Weak Maximum Principal). Let u ∈ C2(Ω) ∩ C0(Ω) be subharmonic ( ∆u ≥ 0 ) in Ω.
Then

max
Ω

u = max
∂Ω

u.

Proof. In the stronger condition where ∆u > 0, the weak max principal holds trivially since the
implication

∑
k ∂

2
ku(x) > 0 implies that for any x ∈ Ω, u(x) cannot be a maximum. This stems from

multivariable calculus which tells us if a point p is a max then ∂2
ku(p) ≤ 0 for all k, hence ∆u ≤ 0.

However, since u is continuous on a compact set Ω, u mist attain a maximum in Ω, but since the
existence of a max within Ω is impossible, u attains maximum along the boundary ∂Ω.
So we go back to considering the case where ∆u ≥ 0 subharmonic. Define v = |x|2, the square modulus
of x ∈ Ω

∆v = ∆|x|2 (10)

=
∑
k

∂2

∂x2
k

|x|2 (11)

=
∑
k

2 = 2n > 0 (12)

∆v > 0 in Ω. We will make use of this fact in the following manner: for any ε > 0, u + εv ∈
C2(Ω) ∩ C0(Ω) and satisfies ∆(u+ εv) > 0 in Ω. We invoke the weak max on u+ εv,

max
Ω

(u+ εv) = max
∂Ω

(u+ εv)

so via the triangle inequality

max
Ω

u+ εmin
Ω
v ≤ max

∂Ω
u+ εmax

∂Ω
v

where we let ε→ 0 we obtain the desired result by the compactness of Ω and u’s continuity.

Theorem 2. Let u ∈ C2(Ω) ∩ C0(Ω) harmonic on Ω, then

max
Ω
|u| = max

∂Ω
|u|.

Proof. We simply make use of minu = −max(−u).

4



(This is an important result since u = 0 in Ω if u = 0 on ∂Ω which implies an improved uniqueness
theorem for the Dirichlet problem: there is no need for derivatives of u on ∂Ω. )

The following is a stronger max principal where we have relaxed the conditions of u’s continuity
on ∂Ω. The logic flows due to the MVP.

Theorem 3 (Strong Maximum Principal). Suppose u ∈ C2(Ω) and subharmonic in Ω. Then either
u is constant or

u(y) ≤ sup
Ω
u ∀y ∈ Ω.

Proof. Define M = supu and decompose Ω such that Ω1 defines the set of points y ∈ Ω where
u(y) = M , and Ω2 where u < M . In precise

Ω1 = {y ∈ Ω : u(y) = M}, Ω2 = {y ∈ Ω : u(y) < M}, Ω = Ω1 ∪ Ω2 connected by assumption.

The set {u(y) < M} defines an open set hence by continuity of u the pre-image of {u(y) < M} under
u is open and is equal to Ω2. We need to show that Ω1 is open, for each we do, then we arrive to our
conclusion. Let y ∈ Ω1. u is subharmonic therefore for all r sufficiently small we have by the MVP

u(y) ≤ 1

|∂Br(y)|

∫
∂Br(y)

u(x) dSx

=⇒ 0 ≤
∫

∂Br(y)

u(x) dSx − |∂Br(y)|u(y) =

∫
∂Br(y)

(u(x)− u(y)) dSx

=

∫
∂Br(y)

(u(x)−M) dSx. ≤ 0. (13)

where we used the fact u(y) = M is a constant and
∫
∂D

dS = Area(∂D). Since u(x)−M is continuous
and ≤ 0, it must follow that u(x) −M = 0 for every x ∈ Br(y), with r sufficiently small. Hence for
every y ∈ Ω1 or Ω1, there is a nbhd Br(y) of y that is completely contained in Ω1, ie

∀y ∈ Ω1 ∃r > 0 s.t Br(y) ⊂ Ω1 =⇒ Ω1 open.

and therefore by connectedness of Ω, Ω1 and Ω2 cannot be disjoint concluding the principal.

Comparison Principal

Theorem 4. Suppose u, v ∈ C2(Ω) ∩ C0(Ω). ∆u ≥ ∆v in Ω, u(x) ≤ v(x) x ∈ ∂Ω.

=⇒ u ≤ v in Ω.

Proof. = u− v. w ≤ 0 on ∂Ω.
=⇒ w ≤ 0 in Ω
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Applications: Uniqueness for Dirichlet. ∆u = f in Ω, u = g on ∂Ω
∆u ≥ 0 in Ω, u = 0 on ∂Ω

=⇒ u ≤ 0.

Example: ∆u = Kuα (K > 0, α > 0) does not have a positive solution.
u = v on ∂Ω

−∆u ≤ −∆v =⇒ u ≤ v

f ≤ g =⇒ (∆)−1f ≤ (−∆)−1g
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